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and C(10) determine the conformation of the carbonyl 
group. If the piperidone ring took up the boat confor- 
mation, C(10) would collide with H(11,3) while H(9, 1) 
and H(8, 1) would be forced against H(3) and H(1) 
respectively, resulting in large compression strains. In 
all the related compounds whose crystal structures have 
been determined (Fodor, 1970) the piperidine ring also 
has the chair conformation. 

The mode of packing implies that there is no strong 
intermolecular hydrogen bonding. The shortest inter- 
molecular contacts range from 2.45 to 2.90 A between 
the C1- and O atoms of one molecule and the H atoms 
on surrounding molecules. The O atom is involved in 
four contacts: 2.47, 2.57, 2-69 and 2-85 A; C1- has two 
2.67 and 2.69 •. None is particularly short and, while 
these interactions are involved in holding the structure 
together, they are not hydrogen bonds in the accepted 
sense (Donohue, 1968). 

The unique torsion angles between the H atoms on C 
atoms 2, 3, 4, 7 and 9 can be used to estimate the 
coupling constants that will be observed in the n.m.r. 
spectrum (Jackman & Sternhell, 1969). These values 
are given in Table 4. A value of 4.5 c.p.s, was observed 
for JH(3)...H(4) in the free ketone. It thus seems reason- 

Table 4. Torsion angles between hydrogen atoms 
(+  5 °) 

H(3)  ~ H(2 ,  1 ) 56 ° H(4)  ~ H ( 9 , 1 )  74 ° 
H(3 )  ,-, H(2 ,  2) 67 H(3)  ,~ H ( 7 , 1 )  36 
H(3)  ,,~ H(4)  53 H(3)  ,,~ H(7 ,  2) 85 
H(4)  ,,, H(9 ,  2) 45 

able to conclude that in solution the free ketone 
retains the conformation found in the solid state for 
the hydrochloride. 
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A pure sample of Utah halloysite has been subjected to an X-ray diffraction study. The X-ray line 
profiles have been studied in the light of a theory of diffraction by curved crystals developed in this 
paper. It is concluded that metahalloysite has a lath-like cylindrical structure and the kaolin layers are 
considered to be arranged parallel to one another but shifted parallel to themselves. Experimental 
results have been compared with the theoretical calculations and a satisfactory model with the values 
of the lattice parameters has been proposed. Observed and calculated line profiles agree with this model 
fairly satisfactorily. 

Introduction 

Halloysite is an important member of the kaolin group 
of clay minerals and is made up of kaolin layers. 
Brindley & Robinson (1946) have considered it to be 
composed of kaolin layers which are stacked more or 
less regularly along the c axis but are displaced at 
random parallel to the ab plane. It has not yet been 

possible to carry out a detailed structural analysis 
of halloysite because of the great complexity of the 
diffraction pattern. However, Brindley & Robinson 
(1948) have made an attempt to analyse the structure 
of metahalloysite on the basis of a disordered structure. 
They observed that the X-ray reflexions could be 
grouped into two categories: (i) the basal reflexions 00l 
which are the only three-dimensional reflexions and 
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(ii) the two-dimensional hk bands. The lattice dimen- 
sions were observed to be b=8.90 and a=b l /3=5 .14  
A~. Dimensions of a and b are practically the same as 
those of kaolinite but the layer spacing c is 7.20 A~ 
which is slightly greater than that for kaolinite. 

The same authors also investigated in detail the 
intensity distribution in the hk bands by applying 
Warren's (1941) theory of diffraction by two-dimen- 
sional layer lattices. They observed only a qualitative 
agreement between the experimental and the theoret- 
ical patterns. These differences between the observed 
and the calculated profiles may be attributed partly to 
the approximations involved in Warren's (1941) 
theory and mostly to the inadequacy of the model 
assumed. 

Electron microscopic studies of halloysite first made 
by Bates, Hildebrand & Swinford (1950) and Bates 
(1958) have brought to light a new idea regarding the 
structure of halloysite. These authors have observed 
that halloysite exhibits tubular morphology rather 
than the platy one originally suggested. Since then 
many workers have made thorough electron micro- 
scopic studies of halloysite collected from various 
sources (Bates & Comer, 1955; Brindley, Santos & 
Santos, 1963; Santos, Santos & Brindley, 1966; etc.) and 
have confirmed the tubular morphology of halloysite. 

Bates et al. (1950) have attempted to explain the 
tubular structure in terms of the misfit between the 
tetrahedral and octahedral sheets of the layer structure. 
Brindley (1961) has tried to explain the X-ray dif- 
fraction from halloysite on the basis of the tubular 
structure. The high degree of randomness with respect 
to a and b axes has been considered in terms of dis- 
placements both parallel to the tube axis and around 
the circumference. The breadth of the basal reflexions 
has been attributed partly to the small number of 
layers forming the tube walls and partly to their 
curvature. Cowley (1961) has also attempted to ex- 
plain the asymmetric line profiles of metahalloysite on 
the basis of his theory of curved crystals assuming 
halloysite to consist of a single curved layer of kaolin 
and has achieved a partial success. 

Thus it appears that while it is extremely likely that 
the atomic layers in haUoysite are curved, no worker 
has yet been able to propose a convincing model for 
its structure supported by a suitable theory of diffrac- 
tion which can satisfactorily explain the experimentally 
observed X-ray diffraction pattern. In view of this, it 
was felt that a fresh detailed analysis of the diffraction 
pattern of halloysite on the basis of a rigorous theory 
of diffraction by a cluster of curved crystallites might 
lead to some valuable information on the structure. 
The present work was therefore undertaken to propose 
a satisfactory model for the structure of halloysite. 

Experimental 

A sample of pure halloysite from Utah was selected. 
The average chemical composition and the result of 

differential thermal analysis of the sample have already 
been reported by Bhattacherjee (1971). 

The photographic and counter techniques used in 
the present investigation were similar to those used by 
Mitra & Bhattacherjee (1969). The powder photo- 
graphs were used for identification and measurement 
of interplanar distance while the counter technique 
was employed for measurement of intensity and study 
of the line profiles. The background was determined 
by the method of Mitra & Misra (1966). The order of 
accuracy achieved for the interplanar distance mea- 
surement was about 0.2 % while that for the intensity 
measurement was about 1%. The d value corres- 
ponding to the first nearly symmetrical peak for the 
untreated sample was found to be 7.42 A. 

Results and discussions 

(a) Nature of the line profiles 
The observed diffraction pattern was found to 

consist, as reported by Brindley & Robinson (1948), 
of two different types of profiles: (i) nearly symmetrical 
peaks usually encountered in diffraction patterns of 
distorted crystals, (ii) extremely asymmetric broad 
bands with high background rising sharply in the 
low-angle side while tapering gradually in the high- 
angle direction. 

All the observed line profiles were corrected for 
geometrical effect by Stokes's (1948) deconvolution 
method. Geometrical line profiles for this purpose 
were constructed by applying the method due to 
Mitra (1963). 

(b) Discussion of  the model 
It is well known that halloysite can be considered to 

have tubular arrangement of atoms. Recently Mitra & 
Bhattacherjee (1968, 1971) have derived a general 
expression for the intensity of X-rays diffracted by a 
powder of fragments of cylindrical crystallites without 
any simplifying assumptions. The cylindrical crys- 
tallites assumed by Mitra (1965) and Mitra & Bhat- 
tacherjee (1968, 1971) consist of atoms arranged 
equiangularly on arcs of concentric circles forming a 
layer which is repeated at regular intervals. This 
model, hereinafter called model 1, presupposes that 
interatomic distances on successive arcs are regularly 
changing. Such a regular variation in distances be- 
tween corresponding atoms in successive kaolin layers 
is difficult to accommodate indefinitely and it will be 
more realistic to assume the actual distances between 
corresponding atoms on successive arcs to be the 
same. This model, hereinafter called model 2, is shown 
along with model 1 in Fig. 1 (a), (b). 

The essential difference between models 1 and 2 is 
that while the interatomic arcual distance in different 
concentric layers in model 2 is constant, that in model 1 
varies so that the angle subtended at the centre of the 
arc is kept constant. Mitra & Bhattacherjee (1974) have 
considered various ways of achieving model 2 and have 
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concluded that the different constraints in model 2 
can be satisfied only if we consider either a small region 
of the curved part of the crystal or if we assume a 
series of layer shifts and lattice defects to take place. 
As a first approximation we may assume the mathemat- 
ical description in § (c) to be valid for model 2. It is well 
known that the usual straight crystals containing 
lattice defects can, in the kinematical first approxi- 
mation, be taken to be one without defects for broad 
features of the diffraction pattern. Similarly, in the 
case of curved lattices, we may consider the mathemat- 
ical description in §(c) for model 2 to be valid while 
in actual practice the treatment will have to be modi- 
fied as discussed in §§(f) and (h). Optical transform 
studies of Mitra & Bhattacherjee (1974) have shown 
that for all broad features the mathematical descrip- 
tion in §(c) for model 2 is valid for curved crystals 
containing various types of lattice defects and hence 
we proceed to calculate the diffraction intensities on 
the basis of the mathematical description of model 2 
given in §(c). 

(c) Diffraction intensities from cluster of  curved crystal 
lites of  model 2 

Let the crystallite consist, as in Fig. l(b), of layers 
ABCD separated by c in the Z direction. Then the 
position of the nth atom in the mth arc on the tth 
layer ~,,,, will be described by the cylindrical co- 
ordinates (R+mb), n~o,, and tc respectively, where R 
is the radius of the first arc from the common centre on 
the tth layer; b has been taken to be equal to the 
distance between successive arcs which is justified on 
the assumption that the crystallite is of small size and 
of small curvature as discussed in the previous section 
and in Mitra & Bhattacherjee (1974). tpm and ~P0 are 
the angular distances between two nearest neighbour 
points on the mth and the first arcs respectively. In 
terms of the cartesian reference system (XYZ) shown 
in Fig. 2(a), (b). 

~mnt : ix(R + mb) sin n~0 m q- iy(R + mb) cos n~o m + izte (1) 

where ix, iy and iz are unit vectors in the directions X, 
Y and Z respectively. Let the unit vectors in the 
directions of the incident and diffracted beams be 
tTo and t~,~ respectively, let us define t; as ~ = t~,~-tTo and 
let tT be described by the spherical coordinates S, Z and 
~, respectively, so that in terms of the Cartesian axes 

= ixS sin ), cos Z + iyS sin ), sin Z + izS cos ~,. (2) 

Then the amplitude of the X-rays diffracted in the 
direction ~ will be given by 

M--I N--I T--I t 2~ } 
A(t~)=F(t~)~ ~ ~ e x p l i  . . . .  (0m,t-00).t~ (3) 

m=O n=O t=O 

where F(ty) is the amplitude of the X-rays scattered by 
the identical group of atoms attached to each lattice 
point (say P) and 00 locates the position of the atom at 
the origin (R,O,O). It is easily seen that 

CONSTAN'i" 
6( VARIABLE ~a) 

i 
ol CONSTANT 

VARIAI~,LE 

(b) 
Fig. 1. Models of curved lattice. (a) Model l. (b) Model 2. 

(a) 
tY 

,,7. 

o 

(b) 

Fig. 2. (a) Position of the lattice site in XYplane. (b) Cylindrical 
shell with axis parallel to OZ. Q,,,t denotes the position of 
the lattice site P from the origin O in the coordinate system 
XYZ. 
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A(~)= F(cr)G(cr) 

where 

with 

s,n(  
sin (~- c .  e) 

x exp { -  - ~  i ( R -  ( ~ - )  e) . . }  (4) 

M--1N- - I  2 ~  ) 
G(cr)= ~ ~ e x p ( i - - ~ m , . ~  (5) 

m=0 n=0 

(6) Omnt = ~mn + tc . 

It is clear from equations (1), (2) and (5) that 

N--1M--lexp t ~ -  y (n09m + 2")} G(s)= ~ ~ Ii  (R + mb)S  sin sin 
n=0 m=0 

(7) 
Proceeding as Mitra (1965) we obtain 

N--1 M--I  +oo 

G(p)= Z Z Z Jr(P[ R + mb]) exp ip(n09r,, +2") (8) 
n=0 m=0 p=--oo 

where Jr(x) is the Bessel function of the first kind of 
order p and argument x; p is an integer and M =  
(2rc//)S sin ~, = (4rc/2) sin 0 sin 7 since Itr[ = S-- 2 sin 0, 20 
being the angle between tre and tr0. The intensity I(t0 
in the direction ¢~ is given by 

I (~)=A(~)A*(g)  

 co) 
= F(e )F*( . )H(g )  (9) 

where 
H(~)=G(~)G*(~) . 

It is clear from equation (9) that I(~) will have non- 
zero values for a given value of 0 only if 

27~ 
- -~ c sin 0 cos ~'=10 (10) 

where 10 is an integer. Thus for a given value of 0 only 
certain values of 7 will be permitted• Hence the 
average intensity diffracted at a given angle 20 due to 
all orientations of the crystallites means averaging 
over all values of X and only these permitted values of 
7, the average value of H(cr) for a given value of 0 but 
all values of 2' will be given by 

H(,u) = Z Z Z Z Z Jv(lz[R + mb])Jv(PtR + re'b]) 
p n n" m m' 

x exp ip(n%,, - n'09,,,,)= Z Z Z Z So(z) (l l) 
n ,?1' m /71' 

where 

z2=pZ[(R + mb) z + (R + m'b) 2 -  2(R + rob) (R + m'b) 

x cos (n09.,-n'09.,,)] . (12) 

Since, as shown by Morse & Fesbach (1953), 
+oo 

J0(z)= ~ Jv(x)Jv(y) exp (ip09) 
p =  - - o o  

with 
z 2 = x z + y2 _ 2x), cos 09. 

In the corresponding expression for model 1, equations 
(9), (10) and (1 1) will remain unchanged while equation 
(12) will be modified by putting 09m = 090 • Now in model 2 

o r  

a a 
09,,- , 090 = -,.. R + mb 

090 

09m = 1 + mr209o- 

where r2=b/a and a the constant arcual distance 
between two nearest neighbour lattice points on the 
same arc. Thus when mr209o~ 1, i.e. R very large, the 
intensity expressions for the two models become 
identical. 

Introducing 

2n 2a sin 0 
Q -  ; h ' -  

N09o 2 
and 

we have 

C 
r I ~ _ a 

l (h , )= F2(h,) ~ sin 2 (~Tlo) 
to sin 2 (Mo) 

,., ~, r~h '2 ] 

X 1//[(1 +mr209o)2+(1 +m'r2090)2--2(1 + mr209o) 

2~ n . . . .  m ' r 2 ~  × (l+m'r2090) cos~--~ 1 +mr:~o 1 + 

(13) 
The summation over 10 is carried over all values of 
10 permitted by equation (10). 

(d) Nature o f  intensity distribution fi 'om cluster o f  curved 
crystallites o f  model 2 

Results of numerical computations of l(h'lo) for 
several cases, viz. N =  20, N09 = 1 0 °, rl = 1 and 2, r2 = 1, 
M =  1 and 10=0, 1,2, show that the general behaviour 
of I(h'lo) with h' for different values of 10 is nearly the 
same for both models 1 and 2. Since these results have 
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been shown graphically for model 1 by Mitra & Bhat- 
tacherjee (1971) they have not been reproduced here. 
However, overall values of I(h') for different values of 
10 and large T for some of these cases are shown in 
Fig. 3. It should be mentioned here that for the present 
calculation M has been taken to be only 1 in order to 
facilitate the calculations. This approach has been 
amply demonstrated in the optical diffraction study 
by Mitra & Bhattacherjee (1974) and by calculation 
by Bhattacherjee & Mathur (1974). 

From these curves and equation (13) it is clear that 
the maximum will be obtained at h' = lo/rl i.e., 2a sin 0/2 
= loa/c or 2c sin 0/2 = 10. This means that the maximum 
for 10=0 will be at s in0- -0 ;  for 10=l will be at 
sin 0=2/2c etc. I(h'lo) at these values of h' becomes 
T2N2M2F2(h'). Thus the location of maxima from 
such crystallites in experimental curves should im- 
mediately lead to the determination of c, which is 
found to have a value of 4.95 A [see §(e)]. 

(e) Comparison with experimental intensity distribution 
from metahalloysite 

As has been mentioned earlier the observed dif- 
fraction peaks from metahalloysite consist of (i) some 
nearly symmetrical peaks and (ii) some highly asymmet- 
ric peaks. Peaks of type (ii) can be attributed to the 
curved crystallites as shown in Fig. 4. Reflexions shown 
in Fig. 4(b) will be of the usual Bragg type but slightly 
broadened due to stacking faults. The stacking fault ! 
clearly consists of shift of a layer with respect to its 70 F 
neighbouring layer. These reflexions will be broad ~,o[- 
but symmetrical. Peaks of type (i) may be attributed ! 

to such reflexions. Clearly, the value of a can be 5o 
obtained from the position of the symmetrical peaks, f 

Since these nearly symmetrical peaks correspond to ~ o  
an interlayer distance of 7.4 A and its various sub- 
multiples, it is clear that a = 7 . 4  A. This is further ~o 
confirmed from the comparison of locations of the zo 
different peaks of type (ii) in the observed as well as 
calculated diffraction patterns as shown in Table 1 and to~ 
Fig. 5(a), (b). o< 

Table 1. Values o f  'a' as determined by comparing 
the locations o f  the asymmetric peaks in the 

observed as well as calculated diffraction patterns 

Asymmetric peaks h' 0 (°) 'a' 
First (02, 11) 1-74 10.1 7.6 A 
2nd (20, 13) 3.35 19.2 7-8 
3rd (31, 15, 24) 4.25 27.4 7.1 
4th (06, 33) 4.92 31.3 7.3 

Again, as shown in §(d) the location of the first 
asymmetric peak will reveal the value of c. Since the 
first asymmetric peak corresponds to 20 = 19 ° we have 
c=4.95 A. Thus a and c of the curved crystallite have 
the same values as c and a of the traditional kaolin 
layer; b in the curved crystal may be taken to be the 
same as in the traditional case. 

( f )  Discussion on the structure of  metahalloysite 
We thus find that metahalloysite consists of kaolin 

layers shifted in the b direction resulting in a curvature 
in the ab plane. Such shifts have been observed for 
kaolinite (Mitra, 1963) and its dehydration products 
(Mitra & Bhattacherjee, 1970). Since the bond be- 
tween the kaolin layers is very weak, there are likely 
to be such shifts and also tilts and variation in inter- 
layer distances. Brindley (1955) and Cowley (1961) 
have assumed that the kaolin layers themselves are 
curved. This means that b of the curved crystal will 
have the value 7.4 A. But it has already been found in 
§(e) that the observed diffraction pattern is consistent 
with a = 7 . 4  A. It is difficult, with the accepted ideas 
about the kaolin layers, to reconcile both these values 
and it is extremely likely that the model proposed by 
Brindley (1955) and Cowley (1961) is wrong as far 
as metahalloysite is concerned. It may be valid for 
hydrated halloysite. The curvature of the kaolin layers 
has been assumed because of the misfit between the 
silica tetrahedra and alumina octahedra. Such cur- 
vature is not inconsistent with the model discussed 
here and the theory developed in §(c) will still be 
applicable to it provided the curvature is not large. In 
fact, as has been discussed in §(b), this curvature of 
the kaolin layers [shown in Fig. 6(b)] is an essential 
feature of the model proposed in this paper. We as- 

~o u=2o" T 
x-..~--~ Zo=.I Nq~alO" J 

,,a .4, ~.d,-..A ,g.O=2 M = /  ! 

• I t~,, /~ 
\ , I ! l  ~, I,,' +1 

i " t  I ~  t ' i  

\ , 1'~ +, !+ / l ' , ,  !+ 
\ ! li' ', 

\ ', + '.,, l i 
" , , , ,  I i N d.+ , ,  // ! 

0.2 o4 c>6 o.a t.Oh~ m 1.4 1.6 t'.a 2'.o 2.~ 

Fig. 3. Plot ofI(h) vs h for a random aggregate of identical shell 
fragments with a given angular opening. 

~ E  ~ I 
(a) (b) 

Fig. 4. X-ray reflexions from different faces of a curved crystal- 
lite. (a) Reflexions responsible for asymmetric bands. (b) 
Reflexions responsible for the nearly symmetrical peaks. 
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sume this curvature to be very small, so that, as shown 
by Mitra (1965), the usual Laue-Bragg laws are valid 
for this case. The slight anisotropy of the peaks of 
type (i) is presumably due to this curvature which may 
also be taken to give rise to variability in interlayer 
spacings as has been observed by Bhattacherjee (1973). 

p- 
, . . , ,  

tO 
Z 
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i -  
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I - .  Z 
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3 0  

F_gPERIMENTAL 
H=I . . . .  THEORITI CAL  

~ COWLEY. 

k 02, I! 

I I I I I 1 I I I " - "  I 

IO II 12 13 14 
e---*- 
(a) 

06, 33 

I //I I I I I I I I ! 

31 ~ 3 3  S4 
e-- -"-"  

(b) 
Fig. 5. Experimental diffraction profiles of the asymmetric 

bands along with the theoretical profiles calculated on the 
basis of equation (13). 

Co 

~ b 

(a) 

Co 

(b) 

Fig. 6. Kaolin layers in metahalloysite according to the model 
proposed. (a) Metahalloysite crystallite having curvature in 
the ab plane caused by the shift of the kaolin layers parallel 
to b. (b) Curvature of the kaolin layers. 

(g) Curvature as a result o f  inteHayer shift 
A simple relation between the curvature of the 

metahalloysite crystals and the probability of shift of 
the kaolin layer in the b direction by an amount ½b can 
easily be established. Thus if N is the total number of 
kaolin layers constituting the curved-lath-like halloy- 
site crystallite and P the probability of interlayer shift, 
the average shift per layer will be ½bP. If R is the radius 
of curvature then 

o r  

2R½bP=a 2 (14) 

and 

a 2 

R-_3__ 
- 2  bP 

Na NbP 
- = ~ NPr2.  (15) ~oN- R 32- a 

When P =  1, i.e. each layer is shifted with respect to 
its neighbour, the full cylinder is formed when 

o r  

2n = ~ Nrz 

37~ 
N =  (16) 

r2 

which is usually a very small number. When the 
probability of shift is P, the maximum number of 
layers which can be accommodated in a cylinder is 
37~/Pr 2. If N is larger than this and the layer shift 
proceeds unabated with probability P, the lath is 
likely to break into a number of cylinders and laths 
depending on the value of N. The halloysite crystallite 
is not thus taken to be a smooth cylindrical lath but a 
serrated cylindrical one. 

(h) Diffraction intensities due to serrated cylinders 
The effect on the diffraction pattern of the halloysite 

cylinder being serrated instead of smooth is that R in 
equations (1) and (7) is no longer constant for all values 
of n but will be R + A R ,  for the nth layer, AR,, being a 
small value. The terms involving AR, can be absorbed 
in F(~) so that F(~) is different for different values of n. 
In equation (9) F(~)F*(~) will now be replaced by 
the average value * • (F,(a)F,, ,(a)),  the averaging process 
being carried over all values of n and n'. This result is 
exactly the same as that obtained in the case of layer 
shift in normal straight crystals. As in the analogous 
case of the straight crystals, the main features of the 
diffraction pattern will be unaltered by the serrations 
in the cylindrical crystals - only the line profile will be 
slightly modified. The resulting modification in the 
line profile will be discussed in a forthcoming publi- 
cation. For the present, however, the determination 
of a, b and c in §(e) above will be unaffected by the 
modification in the model of the cylindrical crystalhtes. 
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(i) Comparbon between experimental and calculated 
line profiles 

Fig. 5(a), (b) shows the experimental profiles of the 
two asymmetric bands (02, 11 and 06, 33) in the 
angular regions 0 = 9 - 1 4  ° and 30-33 ° along with the 
theoretical curves based on equation (13) with N--20, 
rx = 0.7 corresponding to c = 5.14 A, a = 7.4 ~,  N~0 = 10 ° 
and M =  1 for h ' =  1.7-1.9 and 4.85-5"50. In the model 
of curved halloysite envisaged in the present work, the 
value of b which is the same as in kaolinite has been 
assumed to remain unchanged. Hence our main in- 
terest has been to obtain values of a and c of the 
curved model and for this calculation, as has been 
shown by Mitra & Bhattacherjee (1974) and Bhatta- 
cherjee & Mathur (1974), M >  1 does not yield results 
which are essentially different from those of M =  1. 

Diffraction profiles in these angular ranges as 
calculated by Cowley (1961) have also been reproduced 
in the same figures for the sake of comparison. It is 
found that the theoretical curves based on equation (13) 
agree quite well with the experimental curves. It is 
further evident from Fig. 5(b) that the agreement 
between the theoretical and experimental profiles is 
much better than that of obtained by Brindley & Rob- 
inson (1948) by the application of Warren's theory 
of disordered lattice. Fig. 5(b) also shows that the 
agreement between the calculated and the observed 
profiles in the present case is evidently better than that 
of Cowley (1961). Brindley & Robinson (1948) found 
that the half intensity width of the theoretical curve 
on the basis of Warren's theory is half that of the 
experimental curve of Fig. 5(b). In the present case, 
however, the half width of the theoretical curve is 
equal to the experimental half width [Fig. 5(b)]. In 
case of Fig. 5(a) too, the agreement between the 
theoretical and the experimental curves is fairly good 
and this agreement is better than that calculated 
either from Warren's theory or from Cowley's. 

Conclusions 

The above discussion enables us to arrive at certain 
definite conclusions regarding the structure of meta- 
halloysite. It is observed that the theory of diffraction 
by curved crystallites developed in this paper can 
explain more satisfactorily the experimental results 
than Warren's theory of diffraction by a disordered 
stack of two-dimensional layers. We can now safely 
conclude that metahalloysite has a cylindrical lattice 
and is made up of a stacking of annular layers with 
a spacing of 4.95 A between consecutive layers. Each 
annular layer is composed of arcs consisting of about 
20 atoms equiangularly placed. The angle made by 
the first arc on the concave side at the axis of the 
cylinder is very small (,-, 10 °) and the arcual distance 
between two neighbouring atoms is 7.42 ,&. The 

arcual distance between two neighbouring atoms on 
each arc remains the same so that the angle subtended 
at the axis of the cylinder is different for different arcs. 
The kaolin layers which are arranged parallel to each 
other are slightly curved and shift sufficiently parallel 
to themselves so that the cylinder is formed. 

We wish to thank Dr George Switzer, Smith- 
sonian Institution, U.S.A., for the gift of the sample 
(Cat. No. 106236). 
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